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ABSTRACT

A parallel processing algorithm for standard cell placement suitable for execution on a hyper-
cube computer is presented. In the past there have been proposed several parallel algorithms for
performing module placement that are suitable for execution on a two-dimensional array of proces-
sors. These algorithms had several limitations; namely, they got stuck:a'.t local minima, were sus-
ceptible to oscillation, could not handle variable size modules (standard cells), and allowed only
nearest neighbor exchanges. Recently, simulated annealing, a general purpose method of multivari-
ate optimization, has been applied to solve the standard cell placement problem on conventional
uniprocessor computers. These algorithms do not get stuck at local minima and can handle
modules of various sizes, but take an enormous amount of time to execute. In this thesis, a parallel
version of the simulated annealing algorithm is presented which is targeted to run on a hypercube
computer. A strategy for mapping the cells in a two-dimensional area of a chip onto processors in
an n -dimensional hypercube is proposed such that both small and large distance moves can be
applied. Two types of moves are allowed: cell exchanges and cell displacements. The computation
of the cost function in parallel among all the processors in the hypercube is described along with a
distributed data structure that needs to be stored in the hypercube to support parallel cost evalua-
tion. A novel tree broadcasting strategy is used extensively in the algorithm for updating cell loca-
tions in the parallel environment. Studies on the performance of the algorithm on example indus-
trial circuits show that it is fastu' and gives better final placement results than the uniprocessor
simulated annealing algorithms. An improved uniprocessor algorithm is proposed which is based
on the improved results obtained from parallelization of the simulated annealing algorithm. This
enhanced algorithm, through the use of nonuniformly distributed moves and slightly outdated
placement data, is found to be less likely to get stuck at local minima, and is found to converge to a

better final placement for a variety of industry standard circuits.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

As the complexity of digital systems implemented in VLSI mcreass there is a greater need
for automating the design of the layout for these systems. One of the areas of VLSI design auto-
mation which has received substantial attention in recent years is in researching algorithms for
determining the placement of simple cells or modules in a VLSI design. The placement problem
consists of finding an optimum assignment of N modules on a board with respect to some criterion
prescribed on the interconnections of these modules, such as minimal wire length or signal propaga-
tion delays. The terms "module” and "board" are used as generic terms and apply equally well to
all circuit levels. The physical design of computers includes several distinct categories of place-

ment problems, depending on the type of packages involved.

The simplest placement problems arise in designing chips with structured layout rules. In
these "gate array” chips, standard logic circuits, such as three- or four-input NOR's, are preplaced in
a regular grid arrangement [1.2]. The designer specifies only the signal wiring, which occupies the
final, highest layers of the chip. In more general VLSI design, the standard cell layout is such that
a set of standard cells of constant height and variable width are arranged in horizontal rows with
pads placed around the periphery of the chip. These standard circuits may all be identical, or they
may be described in terms of a few standard groupings of two or more adjacent cells. Further-

more, macro blocks may also be present on the chip. An example typical standard cell layout is

shown in Figure 1.1.

Given a set of standard cells and a net list which describes the interconnections among the
cells, the objective is to place the cells so as to minimize the total length of wires interconnecting

the cells and to minimize the total area of the chip. Manual placement generally results in area and
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Figure 1.1. Example standard cell VLSI layout.

performance efficiency for small circuits. However, for very large circuits, not only is the design
time prohibitively long, but the area and performance suffer. The problem that arises in automat-
ing this process is that like many eombinatorial optimization problems this problem is NP-complete
[3]. The time required to perform an algorithmic solution. which surveys all possible solutions of a
given placement problem, grows exponentially with the number of cells. Fortunately, in practice
one needs merely ‘a good solution and some sort of assurance that the absolute minimum solution is
not significantly better than the one found. Several heuristic methods which attempt to accomplish

this have been developed that find good solutions with acceptable computational cost.

1.2. Previous Research

There are two basic strategies for heuristics: "divide-and-conquer” and "iterative improve-

ment.” In divide-and-conquer algorithms such as min cut [4]. one recursively divides the problem




into subproblems of manageable size, then solves these subproblems individually. The solutions to
these subproblems must then be patched back together. For this method to produce very good
solutions, the subproblems must be naturally disjoint, and the divisions made must be appropriate
ones so that errors made in patching do not offset gains obtained in applying more powerful
methods to the subspaces.

Iterative improvement algorithms such as force-directed interchange, pairwise interchange,
neighborhood interchange, and forced-directed pairwise relaxation [5, 6, 7] start with the system in
a known configuration. A standard rearrangement operation is applied to all parts of the system in
turn, until a rearranged configuration is observed which improves the cost function. The rear-
ranged configuration then becomes the new configuration of the system, and the process is contin-
ued until no further improvement can be found. Iterative improvement consists of a search m the
coordinate work space for rearrangement steps which lead "down hill," i.e., reduce the prescribed
cost function. Since this search usually has a tendency to get stuck at a local and not the global
minima of the objective cost function, the process normally has to be carried out several times,
starting from several different randomly generated initial configurations, and then the best place-
ment obtained is used. In addition to these problems. conventional heuristic algorithms usually do

not allow for the amount of flexibility and extensibility desired by users.

To avoid the problems associated with conventional heuristic placement algorithms, a family
of heuristic optimization algorithms have been devised based on simulated annealing [8]. These
algorithms generate the next placement configuration randomly and can climb hills, i.e., changes
that generate configurations of higher cost than the present configuration are sometimes accepted.
These "hill climbing” changes are only accepted according to a certain criterion which takes the

state-of-the-search process into consideration.

The simulated annealing technique has been proposed and applied to the standard cell place-
ment problem in a program called TimberWolf [9. 10]), which by applying all displacements,

exchanges, and orientations of cells randomly, avoids getting stuck at local minima and thus



achieves near-optimal placement.

Recently, some researchers have started to investigate speeding up simulated annealing algo-
rithms by running them on parallel processor systems. Aarts et al. have proposed schemes for
parallelizing simulated annealing algorithms for several general classes of problems and have dis-
cussed theoretical convergence characteristics [11]. A parallel algorithm for the Traveling Salesman
Problem based on simulated annealing has been reported for the hypercube [12]. Parallel algo-

rithms for partitioning and routing have been proposed by Chung and Rao [13].

Two multiprocessor-based simulated annealing algorithms for the standard cell problem have
been reported by Rutenbar and Kravitz [14, 15]. The first scheme, called Move Decomposition, par-
titions the computations of the individual move across processors and thus allows the cooperating
parallel subtasks to evaluate the effects of this move more rapidly. The second scheme, called the
Parallel Moves strategy, allows multiple-move evaluation in parallel but accepts only one of the
moves. In this thesis, we propose a parallel simulated annealing algorithm that is targeted to run in

a local memory message-passing parallel processing environment, namely the hypercube computer.

There are a number of basic differences in the three approaches to parallelize simulated
annealing. In the first two cases, the paralle] algorithms are based on a shared memory model,
whereas the third uses a local memory model. The first is basically simulating a serial-simulated
annealing environment, but evaluating each individual move faster. The second algorithm evalu-
ates multiple moves in parallel but accepts only one move. Hence, its convergence characteristics
are identical to the uniprocessor algorithm. In the third case proposed in this thesis, the moves are
evaluated in parallel and accepted/rejected in parallel on the basis of changes in the cost function
for each move, assuming that the other moves are not made. The theoretical considerations of
whether the annealing properties are still preserved when the cost calculations are based on slightly
outdated information and when only a restricted set of moves are allowed, is a subject of future

research. Experimentally, we have verified that our algorithm works.
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1.3. Thesis Outline

In this this, we present a parallel algorithm using simulated annealing on the hypercube com-
puter. The basic idea used in the algorithm involves parallel exchange and displacement moves in
different dimensions of the hypercube, and acceptance/rejection of the moves on the basis of

changes in cost functions, ignoring the effects of other moves.

In Chapter 2, a detailed description of the hypercube architecture and an overview of the Intel
hypercube simulator., which was used for program development, will be presented. In Chapter 3.
we will briefly describe conventional simulated annealing, and then discuss a parallel version of
the algorithm. We will describe the data structures that are necessary to support various parallel
move evaluations and discuss how the subtasks for evaluating the acceptability of parallel moves
are assigned. We will present a novel tree broadcasting strategy for the hypercube that is used
extensively in our algorithm for updating cell locations in the parallel environment. In Chapter 4,
we will describe the implementation of the algorithm on an Intel hypercube simulator. We will
report on the performance of the proposed algorithm for several actual standard circuits used in
industry and present some accurate estimates of the execution time for the algorithm. We will
show that the parallel algorithm gives about 10-20% better final placements than cogyentional
uniprocessor simulated annealing algorithms. Finally, in Chapter 5, an improved uniprocessor
simulated annealing algorithm, based on the benefits observed from parallelizing the conventional
simulated annealing algorithm, will be presented. We will demonstrate that this improved algo~
rithm is less likely to get stuck at the local minima of the objective function, and thus converges to

a final placement which is better than the final placement generated by the conventional uniproces-
sor algorithm.



CHAPTER 2

HYPERCUBE CONCURRENT PROCESSORS

2.1. Introduction

Supercomputers such as the IBM 3081/3084, CRAY-2, and Burroughs D-825 normally
achieve their high performance by increasing the raw speed of the electronic components and logic
circuits. For these mammoth computers, the switching and propagation delays are measured in

nanoseconds, and data are propagated at speeds close to the speed of light. Unfortunately. these

" uniprocessors are nearing the limits imposed by physical and electrical constraints. Electronically.

uniprocessor computers are reaching their speed limit. To increase the computing speed further,
pipelining and parallelizing of operations must be exploited at the circuit level, making these super-

computers very large and very expensive.

An alternative approach to supercomputing is through parallelism at the processor level. We
are on the verge of a revolution in computing spawned by advances in computer technology. Pro-
gress in very large-scale integration (VLSI) is leading not so much to faster comi)uters. but to much
less expensive and much smaller computers, i.e., computers contained on a few chips. These chips
make it practical to build very high-performance computers, or supercomputers, consisting of a

large number of smaller computers combined to form a single concurrent processor.

The concept of interconnecting multiple, small, inexpensive microcomputers is not new. A
number of multiprocessing systems of differing configurations are in existence. Multiple processors
communicating with each other via single or time shared bus architecture, such as DCS [16], are
very common. In this architecture, several computers are connected to the bus and communicate
with each other through token messages. A time shared bus is easy to construct, but the
processor-to-processor communications are limited because only one information exchange is

allowed at any one time. In another approach, STARAN [17] uses a complete point-to-point con-




nection between processors. This speeds up processor communications and allows simultaneous
data transfer; however, the number of interconnection lines increases rapidly as the number of pro-
cessors increases. C:mmp [18], a multi-miniprocessor at Carnegie-Mellon University, uses crossbar
switches between a bank of memories and a bank of processors. This causes only slightly degraded
simultaneous transfer ability: however, just like the STARAN, the crossbar network increases in
complexity too fast as the number of functional units increases. More recently, Jordon [19]
designed a FEM machine, which is a two-dimensional array, that allows any processor to commun-
icate directly with its eight nearest neighbors. Tuazon [20] added more flexibility by providing a

switching network that allows a processor to create a communication path to any other processor.

The advent of cost-effective VLSI components in the past few years has made feasible the
commercial development of massively parallel computers with upwards of 1024 or more proces-
sors. Many different parallel architectures are under development, but the most commercially
successf’ ul large-scale parallel architecture to date has been the Boolean hypercube, implementations
of which are available from at least four different vendors. In the brief time since their introduc~
tion, these machines have already gone from experimental prototype status to near-commercial

supercomputer performance and have done so at a relatively modest cost.

A significant difference between hypercubes and most other parallel processors is that these
multiple-instruction., multiple-data machines (MIMD) use message-passing instead of shared vari-
ables for communication between concurrent processes. Each processor has only a small private
local memory. Activities with other processors are coordinated by sending messages through an
interconnection network. This type of architecture is more readily scaled up to very large numbers
of processors than multiprocessor designs based on globally shared memory. The hypercube net-
work is connected densely enough to support eflicient communication between arbitrary sets of
processors. yet sparsely enough to be relatively simple and inexpensive to build. Another virtue of
the hypercube network is its flexibility; many other interconnection topologies (rings, grids, trees,

etc.), are subnetworks of the hypercube; hence the hypercube is an ideal test bed for experimenta-



tion with parallel algorithms intended for many different types of distributed-memory. message-

passing multiprocessors.
2.2. Hypercube Message-Passing Architecture

2.2.1. Hypercube interconnection network

A hypercube consists of 2¥ processors that are connected by the bmary N-cube interconnec-
tion. The processors are consecutively numbered or tagged by binary integers, i.e., bit strings of
length N, from O through 2¥-1. In a hypercube interconnection network each processor is directly
connected to N other processors whose binary tags differ from its own by exactly one bit. Topo-
logically, this arrangement places the processors at the vertices of the N -dimensional cube. For
example, in Figure 2.1, a 3-cube is pictured which has 23 processors placed at each of the vertices
and communication links, which directly connect the processors, represented by the twelve edges of

the 3—cube. Simultaneous communications between several pairs of nodes can therefore occur with
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Figure 2.1. Three-dimensional hypercube.
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Figure 2.2. Four-dimensional hypercube (16 processing nodes).

this type of interconnection network.

Higher-order (hyper) cubes are more difficult to visualize. Figure 2.2 shows a four-
dimensional hypercube which can be described as a cube within a larger cube with corresponding
corner nodes connected. Hypercubes of arbitrary dimensions can be constructed by replicating the
one of next-lower dimension, then connecting corresponding nodes. One of the advantages of the
hypercube network is that as the number of processors increases, the number of connecting links
per processor grows only logarithmically, so that very large numbers of processors connected in a

hypercube network become both feasible and attractive.

In practice, the actual physical layout of the hypercube’s procmors is a linear arrangement in
a card cage or a planar arrangement on a printed circuit board. Cube connections are then made by

wires, conducting layers, or backplane. A planar view of a six-dimensional hypercube is shown in
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Figure 2.3.

If a message needs to be sent between a pair of nodes that are not directly connected, then
they are routed from node to node until they reach their destination. The routing path can be
easily derived by inverting one bit at a time of the bits in the source address which differ from
corresponding bits of the destination address until it exactly matches the destination address. For
example, to route data from node 0101 to node 1010 in a four-dimensi&nil hypercube, the inter-
mediate nodes, 0100, 0110, and 0010, would be used. It can be easily verified that for an N -
dimensional hypercube, the furthest node from any starting node is only log,N away. For every
pair of nodes there are (log,N )! possible routes. This redundancy can be exploited to enhance

communication bandwidth and fault tolerance of the hypercube network.

Figure 2.3. Six-dimensional hypercube (64 processing nodes).
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Through software, a hypercube can be adapted to model other interconnection configurations
by ignoring some of the intm-c‘onnects. For example, in the four-dimensional hypercube, by ignor-
ing some of the interconnects one can arrive at the variations shown in Figure 2.4 a, b, and c as the
3D cube, 2D plane, and toroidal mesh. The data routing requirements will affect the particular
variation used. For example, problems which are normally represented in array form, such as
matrix operations and sets of linear equations, etc., can be implemented using a 2D configuration.

Analysis of three-dimensional structures can use the 3D topology.

2.2.2. Processing nodes

An attractive feature of the hypercube is its homogeneity. Because of this, all the processing
nodes are normally designed to be identical. Nevertheless, with any distributed system, a need
usually arises, either by necessity or by convenience, to have a separate processor that acts as mas-
ter controller or manager of the remaining processors. This special processor, usually called the

host, is generally not part of the main hypercube interconnection network. whose processors are

b
@
)

D

—o—0—9 9
D). . ), O o \3 J\} \> »)
a) Three-dimensional cube b) Two-dimensional plane b) toroidal mesh

Figure 2.4. Subnetworks of four-dimensional hypercube.
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referred to as node processors or simply nodes. The role of the host is to initiate a computation,
collect results upon completion, and serve as the input/output (I0) link to the outside world. The
host must be directly connected to at least a subset of the nodes in the hypercube and, preferably.
to all of them. perhaps by a global bus that is used only for host/node communications as opposed

to node/node communications.

Because the hosts need to do more powerful operations such as IO, program down loading, and
system diagnostics, the architecture of the host is normally faster and more powerful. Because this

processor is a critical link in the hypercube, i.e., its loss would disable all IO, the host is normally

made to be more fault tolerant.

Each of the hypercube’s processing nodes is composed of three separate components: the CPU,
local memory, and communications circuitry. Some system designs have a separate communica-
tions coprocessor to handle node-to-node communications thus allowing for simultaneous computa-
tion and communication. Physically, each processing node is built from as few VLSI chips as possi-

ble in order to increase speed and to keep space requirements low.

2.2.3. Distributed sof tware

The hardware structure of the hypercube when viewed at the level of nodes and channels is a
difficult target for programming any but the most highly regular computing problems. Most
hypercube resident operating systems create a more flexible and machine-independent environment
for concurrent computation. Instead of formulating a problem to fit on the nodes and on the physi-
cal communication channels that exist only between certain pairs of nodes, the programmer can
formulate problems in terms of processes and logical communication channels between processors.

This process model of computation is quite similar to the hardware structure of the hypercube but

is usually abstracted from it.

Processes are the basic unit of computations and can be described as a sequential program that
sends and receives messages. A single node may contain many processes. All processes execute con-

currently, whether by virtue of being in different nodes or by being interleaved in execution within
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a single node. Multitasking in such an environment is quite feasible. Each process has a unique
global identification that arises as an address for messages. All messages have headers containing
the destination and the sender identification and a message type and length. Messages are queued in

transit, but message order is preserved between any pair of processes.

Because it has only local memory, the hypercube needs to employ a distributed operating
system. An operating kernel will reside in each node processor to supervxse user processes running
on the node and to handle message traffic. In particular, the kernel in a given node sends. receives,
and queues messages for processes running on its node, and may also automatically forward incom-~
ing messages intended for processes running on other nodes, freeing the main node processor of
much of the communication overhead. A variety of operating systems, compilers, and other pa.ra.l—
lel processing development tools have been designed and implemented for use on the hypercube
architecture [21, 22, 23, 24]. Processor scheduling is an important area which has received substan-

tial research in recent years [25, 26, 27].

The host is responsible for compiling application programs and loading the resulting object
code into the appropriate node processors. Once the host has initiated a computation, the host and

node processors all proceed asynchronously, coordinated only by the exchange of messages contain-

ing problem data or control information.

2.3. Current and Future Hypercube Systems

A hypercube of computers was often discussed in the mid 1970°s as a practical means to
implement a concurrent processing environment [28, 29]. The Russians [30] built a 32-node hyper-
cube in the late 1970's with positive results. Many references have appeared in literature since
then concerning the construction or use of hypercube computers [31, 32]. The pioneering work was
finally brought to practical fruition in 1983 with the Mark I "cosmic cube® [33] at the California
Institute of Technology. where it has since been in regular use for solving a wide variety of impor-
tant scientific problems. Transfer of this new technology into the commercial sector has been rela-

tively swift. Intel Scientific Computers Corp. announced the first commercially available
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hypercube, the Intel Personal Super Computer (iPSC) [34], in early 1985. Several other commercial
vendors soon followed: Ametek Computer Research’s Ametek [35]. NCUBE Corp. [36] with the
NCUBE/ten, and Floating Point Systems Inc. with their T series. Further joint development by
Caltech and the Jet Propulsion Laboratory has since created a new generation of hypercubes, the
Mark II and Mark III.

The availability of these machines is making possible widospread.éx;perimentation of large-
scale parallel computing for realistic applications. Moreover, these machines are moving quickly

from experimental prototypes to genuine supercomputer performance and doing so at a relatively

modest cost.

2.3.1. Commercial systems

Several commercially hypercube systems have become available recently. Even though they
are all built around the same hypercube message-passing architecture, their actual hardware and
software implementation and performance vary considerably from system to system. Three of the
systems have already been delivered to customers. These systems include the Intel iPSC, the

Ametek Computer Research’s Ametek, and the NCUBE Corporation’s NCUBE/ten.

Primarily to reduce development time, the first systems introduced used proven widely avail-
able VLSI circuits as the backbone of each of the node processors. The Intel and Ametek systems
use the 16-bit Intel 30286 [37] to perform all general purpose computations. In addition to its high
computational ability, the 80286 was selected for its built-in support of a custom coprocessor, the
80287. The coprocessor interface provides a very low overhead mechanism for a client program to
invoke task management functions that are implemented concurrently. By using widely available

technology. both systems were able to use existing hardware and software development tools and

thus reduce system development time.

The communications hardware in both systems is rather simple and slow. Node-to-node com-
munications are run over links controlled by an Intel ethernet chip at peak rates of 10

megabits/second. Because of this relatively simple communications hardware and the need to
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perform a large part of the communications overhead in software, link delays for even very simple
messages are in the milliseconds range for both systems [38]. This makes communication very
expensive in comparison to computation time. This means that for an algorithm to be feasible for
significant speedup on these systems, the ratio of computation to communication has to be rather
large. Both systems also tend to have limited amounts of local memory, on the order of 512K
bytes.

The Ametek system’s communication system is small-packet based, which means that small
packets take significantly less time to traverse the links than do larger ones. The Intel iPSC's use of
ethernet with standard 1K byte packets enables it to have constant delay for packets of less than

1K bytes. For larger packets, multiple packets have to be sent.

Both of these systems were designed to allow for easy expansion with configurations from 16
to 128 nodes available in both systems. Additionally, recent developments in the Intel iPSC allows

for up to 4 megabytes of RAM at each node and to have array processors and accelerators attached

to node processors to enhance performance.

These initial systems were primarily designed as a quick implementation of the hypercube

* architecture for commercial use. Systems which followed these initial entries, primarily the

NCUBE/ten, strived to develop special purpose hardware specifically targeted for hypercube use.
In most of the parallel systems being proposed or manufactured, each node consists of many chips,
often more than 100. In contrast., the NCUBE/ten node has only 7 chips, and 6 of them are
memory. The NCUBE/ten uses state-of-the-art VLSI to integrate most of the system (except
memory) at each node onto a single chip. Each node is designed to have 128K bytes of local
memory with local groups of processors connected to a global S00M byte disc. The NCUBE/ten-
node processor is a complex chip of about 160,000 transistors that integrates memory interface,
communications links, and a high-speed 32-bit processor with 64-bit floating point. Each node is
capable of performing at a peak rate of 0.5 megaflops. A broad range of error-correcting mechan-

isms in the data paths is incorporated to insure reliability. The NCUBE/ten is expandable from 16
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to 1024 processors, and unlike the iPSC and Ametek allows for extremely high-speed IO at each of

the processing nodes without the need to transfer information to the host processor first.

23.2. Experimental systems

The first experimental hypercube implementation to get significant recognition was the Mark I
built at Caltech, commonly known as the cosmic cube [33]. This system consisted of at most 64
processing nodes based on the Intel 8086 microprocessor as data processor and 8087 coprocessor as

the floating-point processor. Each node was equipped with 128K bytes of RAM. Full duplex com-

munication channels running at a slow 2 megabits/second were utilized for node-to-node communi- .
cations. Because of the slow processor and communications speeds and the limited 128K bytw of ] '

local memory, the system was definitely not in the supercomputer range, but even with these slow -

microelectronic technologies, the 64-node machine was found to be quite powerful for its cost and

size. The performance of the Mark I encouraged Caltech to develop an enhanced model. ,.

The follow-up to the Mark I was the Mark II system [39]. The Mark II was built in coopera-
tion with the Jet Propulsion Laboratory. This system can be configured up to a 128-node network.
Intel 8086 processors and 8087 coi:rocmors were again used, and RAM was increased to 256K
bytes per node, with additional external IO inc;)rporated into groups of node processors. Enhanced
hardware and software have significantly increased the systems’ performance over that of the
Mark I. A follow-up system, the Mark IH [40], will be a vastly more powerful machine, con-
structed from nodes, each of which has two MC68020s, floating point accelerator chips, and 4
megabytes of memory [41]. These powerful nodes. along with equally powerful node-to-node
communications hardware, are expected to allow the Mark III to match or surpass the performance

of most standard supercomputers. available today.

Several other systems are in various stages of research in a number of universities throughout
the country. The most ambitious system being developed is at the Los Alamos National Laboratory
in connection with the University of New Mexico [42]. This system will be primarily hardware-

oriented. Rather than approaching the hypercube problem by using nodes with minimal computing
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resources, the engineers at Los Alamos have elected to implement the architecture, using nodes with
sufficient computing resources to address interesting problems. A variety of off-the-shelf and spe-
cially designed VLSI circuits will be used in an attempt to allow for upwards of 20 megaflops of
computational power at each node. A small local memory of between 16K and 64K bytes, along
with a large disk with a capacity in excess of 300K bytes, is incorporated into each processing node.
Fast node-to-node links with rates in excess of 40 megabits/second will also be incorporated. This

system is expected to have a peak performance in excess of 20,000 megaflops

2.3.3. Comparison and benchmarks

The performance of a concurrent processing program depends on the hardware, architecture,
and programming algorithm used. The maximum number of concurrent megaflops of computa-
tional power is a commonly used yardstick. This number as normally quoted is obviously only
“potential® performance, which can only be achieved through efficient programming. Because of the
nature of the hypercube architecture, several other factors have to be taken into account. The
hardware factors effected by a particular hypercube implementation are
1) Memory Size
Invariably, as the node memory increases, the performance of the system also improves.
Unfortunately. large memories can be very expensive. Secondary memory or dual port
memories which allow simultaneous communication and computation may be used in some
cases.

2) Processing Speed
Since scientific applications are the primary users of hypercubes, it is essential that the
floating-point operational speed be as large as possible to solve these computationally inten-
sive problems.

3) Communication Speed
High-speed communication is very important in a message-passing environment. Not only
does the link transfer rate have to be high, but the time spent in doing the overhead associ-

-



ated with transmitting, routing, and receiving has to be kept low.
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Table 2.1 gives a comparison of the hardware capabilities of the various systems discussed in the
preceding two sections.

Table 2.1. Hardware capability comparison for various:s.y‘stems.

Max Number Type of Memory Computational | Communication
System Processors CPU Size (bytes) | Miflops (peak) Mbits/Second

Mark I 64 Intel 8086 128K 8 2
Mark II 128 Intel 8086 256K 15 8
Mark II 1024 MC68020 4M >1000 -

iPSC 128 Intel 80286 512K-4M 20 10

Ametek 128 Intel 80286 512K 20 10

NCUBE/ten 1024 Custom VLSI | 128K/500M 512 10

Los Alamos 1024 Custom VLSI | 64K+300K >20000 40

2.4. Hypercube Simulator

Due to the present unavailability of an actual Intel hypercube at the University of Illinois,
initial testing of the algorithm to be presented in the next chapter has been completed using the
Intel iPSC Simulator running on a SUN 3/50 work station system under UNIX 4.2 [43]. This
simulator was chosen because of assurances that programs which executed properly under the

simulator could be transferred to an actual iPSC system and operate with only minimum or no

modification required.

The simulator package consists of a simulator program and a set of libraries which simulate
hypercube operations in a sequential processing environment. This event-driven simulator provides
an interactive interface to the user, which simulates a large portion of the iPSC’s host node com-
mands. These commands allow the user to load executable code into each of the nodes of the

hypercube and to initiate execution. Nodal processes are simulated in the uniprocessor environment

by forking off UNIX processes.
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The major difference between hypercube algorithms and uniprocessor algorithms is the need to
do message-passing between concurrently operating processors. The primary responsibility of the
simulator is to model these message transfers in such a way that ordering of messages is preserved.
In order to remove the programmer as far as possible from requiring an understanding of the exact
communication routing requirements for a given message, a system of logical channels is adopted in
the iPSC system and its simulator. A channel, as used in the iPSC systerh, is a 64-byte block of
memory that contains information about a message to be sent or received. Typical information
contained in this block of memory is the source node and process id, the destination node and pro-
cess id. and the message length. A sending process needs to establish a channel to contain this
information before a message can be sent. Likewise, a receiving process must also establish a chan-
nel to receive this information before the message can be received. Once an operation (send or
receive) has been completed, the information is no longer needed, and the channel can be used again
by another message. If a process needs to send/receive more than one message simultaneously, the
process needs to open a channel for each of the simultaneous send/receive operations. Because of
the nature of these logical channels, the programmer is relieved of determining the actual path over
which a message travels. The operating kernel at each node of the hypercube will determine the

optimal path between the two nodes connected by the logical channel.

A typical message transfer in software requires a call to a procedure send by the node proces-
sor wishing to send a message. Procedure send initiates the transmission of a message to another
node processor. The caller can wait for this transmission to complete or simultaneous computation

can be taking place. A typical call to send is of the form:

send(ci, type. buf, len, node)
where
¢i :Channel identifier of channel over which message is to be transmitted

type : User specified integer value referring to type of message. The
receiving node uses this value to distinguish multiple incoming messages.

buf : Pointer to the continuous block of memory (buffer) that contains
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the message to be sent.
len : Number of bytes in buffer to be transmitted.

node : Physical address of node to receive message.

In a similar manner the node processor which is to receive the message calls a receive procedure. A

typical receive call is of the form

receive(ci, type, buf, &cnt, &node)
where
ci : Channel identifier of channel over which message is to be received.
type : Integer value referring to the type of message wanting to receive.
buf : Pointer to the buffer where the received message is to be stored.

cnt : Upon reception of a message of the proper type,
cnt will contain the number of message bytes received.

node : Upon reception of a message of the proper type, node will contain
the identification of the processor which sent the message.
Through the exchange of data by sending and receiving of messages to and from other processors in

this manner, nodes can exchange required data and coordinate activities.
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CHAPTER 3

PARALLEL ALGORITHM FOR CELL PLACEMENT

3.1. Simulated Annealing Algorithm

Simulated annealing, as proposed by Kirkpatrick [8), is a popular Monte Carlo algorithm for
combinatorial optimization. Simulated annealing is a variation on an algorithm introduced by
Metropolis [44] for approximate computation of mean values of various statistical-mechanical
quantities for a physical system in equilibrium at a given temperature. The Metropolis method.
combined with Kirkpatrick’s "several temperature” method, is collectively called simulated anneal-
ing.

The search for a minimum cost function in a simulated annealing algorithm has a close anal-
ogy to the physical process by which a material changes state while minimizing its energy. When a
material is crystalized from the liquid phase, it must be cooled slowly if it is to assume its highly-
ordered, lowest-energy state. At each temperature during the annealing process, the material is in
equilibrium, i.e., the likelihood of its being in a given state is governed by the Boltzman distribu-
tion for that temperature. As the temperature decreases, the distribution becomes concentrated on
the lower-energy states until, when the temperature finally reaches zero, only the minimum-energy
state(s) have nonzero probability. However, if the cooling is too rapid, the material does not have

time to reach equilibrium. Instead, various defects become frozen into the structure.

Because conventional iterative improvement algorithms forbid changes of state which increase
the cost function, they are much like rapidly reducing a physical system to zero temperature in a
very small period of time. Shuhud annealing is thus a variation of the conventional iterative
improvement algorithms in which uphill moves are permitted in the cost function under the con-

trol of a slowly reducing temperature parameter.
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A simplified algorithmic structure of the simulated annealing algorithm is given below:

PROGRAM SIMULATED ANNEALING
TweT,:
X=X,
While (stopping criteria not satisfied)
While (inner loop criteria not satisfied)
X' = Generate(X);
evaluate cost(X");
If( accept(cost(X"), cost(X) ))
X=X"
ENDIF;
ENDWHILE;
update(T);
ENDWHILE;
END PROGRAM

This algorithm is characterized by three main functions: accept, generate, and update. The func-
tion accept is used to determine if a proposed new configuration of the circuit should be accepted.
While several accept functions can be used [45, 46, 47], a probabilistic exponential function is nor-
mally used for standard cell placement optimization because of its proven ability in other similar

optimization problems. The accept function is given below:

FUNCTION accept( cost(X"), cost(X) )
AC = cost(X") - cost(X):
If(AC <=0)

Return(TRUE);
else
y = exp(-AC /T);
r = random(0,1);
K(r<y)
Return(TRUE);
else _
Return(FALSE);
ENDIF;
ENDIF;
END FUNCTION;

New configurations characterized by a negative change in the cost function (AC <=0) always

satisfy the acceptance criterion. However, for new configurations characterized by AC >0, the
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temperature parameter T and a random number generator play fundamental roles. If T is very
large, then r is likely to be less than y, and a new state is almost always accepted irrespective of
AC. If T is small, close to zero, then only new configurations which are characterized by very
small AC >0 have any chance of being accepted. In generzal, all states with AC >0 have smaller

chances of satisfying the test as the temperature decreases.

The generate function selects a new configuration of the circuit. This means randomly mov-
ing cells within the circuit. These moves can either be the exchange of cells, the displacement of a
single cell, or an orientation or mirroring change in a cell. In the presented simulated annealing
algorithm, the program varisble X represents the present placement of cells and X' represents a
new candidate cell configuration created by the generate function.

The update function, also called the annealing or cooling schedule, determines a new value for
the temperature after completion of the inner loop. The update function is very important in
determining the convergence properties of the simulated annealing algorithm. A broad range of
update functions which return monotonically decreasing values of temperature have been found to
guarantee convergence of the simulated annealing algorithm to an optimal or a near optimal solu-

tion [48, 49, 50, 51, 52. 53].

3.2. Overview of Parallel Algorithm

The simulated annealing technique has been proposed and applied to the placement problem in
a program called TimberWolf [9, 10), which by applying displacements, exchanges, and orientation
changes randomly, avoids getting stuck at local minima and thereby achieves near-optimal final
placement results. TimberWolf has been shown to provide substantial chip area savings in com-
parison to existing standard cell layout methods. We now describe an algorithm for performing
the standard cell placement using a variation of the TimberWolf algorithm on a hypercube of
log (P )~dimensions connecting P processors. Let us suppose that we are given the problem of plac-
ing N standard cells where N >> P. An outline of this algorithm is shown below. Each of the

steps in the algorithm will be described in the following subsections.



STEP 1. Perform initial cell assignments in P processors.

STEP 2. Determine initial temperature.

STEP 3. While "Stopping criteria” : temperature < 0.1 not reached
STEP 4. Generate new temperature

STEP 5. For inner__loop_count = 1 to NA o
/* NA=(N X attempt_ parameter ) / (log(P) X P/2 )% '

STEP 6. For each dimension i=0 to log(P)-1 do

STEP 7. Randomly select P/2 moves (exchange or displace) in parallel
among pairs of PEs connected in dimension i.

STEP 8. Check "range-limiter” function in dimension i.
STEP 9. Evaluate change in cost for each move between pairs of PEs independently.
STEP 10. Accept/reject moves using exponential function independently.
~ STEP 11. Broadcast new cell locations to all other processors.
STEP 12. ENDFOR:
STEP 13. ENDFOR;

STEP 14. ENDWHILE;

3.3. Cell Assignment to Processors

We now describe a technique for mapping a log (P )-dimensional hypercube onto a two-

dimensional area using an example six-dimensional hypercube. The results can be generalized to

other dimensions. In the 64-processor hypercube, a processor having a binary address -

PsP4" " Pi **" Py is connected tO Processor psp4---p; ' * - Po Vvia a link in dimension i. We pro-
pose that each processor be assigned an approximately equal area portion of the total chip area
which can be viewed as a virtual 8 X 8 square grid. Each virtual grid corresponds to a horizontal
portion of a number of rows. (For example, for a standard circuit with 16 rows of cells, each pro-

cessor in a 64-processor hypercube will be in charge of one-eighth the horizontal length of two of

the rows.)

i :
i i '
i
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The cells are initially assigned randomly to different processors such that each processor has
an approximately equal number of cells assigned to it. The cells within each processor are also ran-
domly placed with no regard to area overlaps. We also tested with a strategy of cell assignment

such that the sums of areas of cells assigned to each processor is approximately equal to

1 N
Aw"a—[ZAm-

m=1

where A, is the area of the m** cell. But because of the large number of moves that are accepted
at high temperatures in the initial stages of the annealing process, it does not make any difference
which strategy is used since the cells get randomly dispersed anyway. Since all cells have constant
height, each processor therefore is assigned a rectangular portion of the chip area. The correspon-
dence between processor addresses and virtual grid regions on the physical chip area is shown in
Figure 3.1. By choosing such a map., we guarantee that the processors that are adjacent in a pre-
determined set of four dimensions of the hypercube allow for-all nearest North-South-East-West
neighbor displace/exchanges. The other two dimensions of the hypercube are used for
displace/exchanges across larger distances in the area map. For example, in Figure 3.1, processor
26, which controls grid location (3.4), has a a 4-link to processor 10, a 3-link to processor 18, a 2-
link to processor 30, and a 0-link to processor 27, which correspond to the nearest neighbors in the
North(2.4), South(4,4), East(3.5) and West(3,3) directions; in addition, the 1-link to processor 24

and the 5-link to processor 58 control grid locations (3,1) and (6.4). that are distance 3 away from
(3.4).

3.4. Distributed Data Structure

We assume that each processor contains a list of cells currently assigned to this processor
along with the following information for each cell to aid in the computation of the cost function in
parallel among processors in the hypercube:

(1) The width of the cell
(2) The (x.y) coordinate location at which the center of the cell is currently placed

(3) A list of nets to which this cell is connected
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(4) For each net listed in (4), a list of other cells, to which the net is connected, along with the

(x.y) pin location(s) within these cells

The state of any particular cell is composed of the information.in (1) through (4) and is
packed within a continuous block of memory to allow for easy packet transfer of information
between nodes. Also, a list of (x.y) locations and widths of all cells that are assigned to processors
that are adjacent in the two dimensions of the hypercube corrsponding to the East-West nearest
neighbors in the physical area map is also maintained in each processor. Figure 3.2 shows an exam-

ple of the blocked memory data structure for typical cells.

3.5. Cost Function

Because of the nature of the simulated annealing algorithm, a very complex cost function can
be used which takes into account many different aspects of a particular circuit configuration. The
cost function for the standard cell placement problem consists of three parts:

(1) Estimated wire-length using haif the perimeter of the bounding box rule
(2) Overshoot or undershoot of each row length over or under the desired row length
(3) Linear area overlap between cells in the same row
These are graphically shown in Figure 3.3 with corresponding cost functions. The horizontal work

space length is calculated to be equal to 110% of the desired length of every row. The cells for a
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given row, therefore, have at least an additional 10% of length in which to move in each row.

However. the cost penalty associated with going over or under the desired row length is calculated

using the desired length and not the 110% length of each row.

3.6. Move Generation

After the cells have been distributed among the processors of the hypercube. each processor
repeatedly interacts with its neighboring processors in each of the d dimensions of the hypercube.
The set of steps involved in a parallel set of moves is outlined in Figure 3.4. At each time step, P /2

pairs of processors participate in the evaluating P /2 moves.
3.7. Discussion of Moves

3.7.1. Mastership selection

For each pair of processors (p.q) connected in dimension i, one of them is chosen to be the
Master and the other to be the Slave using the criteria listed in STEP 1 of Figure 3.4 to ensure that
the mastership of the pair alternates between processors in alternate iterations. The choice is not
random as in [54] because it would then involve an extra synchronization message between the pro-
cessors, and we wish to reduce the communication overhead as much as possible. We alternate
mastership between iterations because otherwise, in a fixed scheme, we would bias the displace-

ments of cells from the Master to the Slave processor resulting in the Master processor having no

cells after several iterations.

3.7.2. Selection of move

At each iteration of the TimberWolf algorithm the generate function is performed with one
of two types of cell movements randomly chosen to create a new circuit configuration for analysis.

These moves are:

(1) Displacement of a single randomly selected standard cell from its present
position to a randomly selected point anywhere within the physical work space

(2) Exchange in position of two randomly selected standard cells



Mlo-

........ SE.Y 0 RO

COST(WL) = X-span + Y-span

30

.........................................

Y-span

M3

under

over

-----------------------------------------

COST(EO) = | row_Ingth_ desired - actual_row_Ingth | X 5

I —

COST(AO) = (linear overlap) 2

Figure 3.3. Cost function evaluation.

.......................




31

PROCEDURE PARALLEL MOVES;

STEP 1 For each pair of processors (p.q) connected in dimension i, if the inner_loop_count is even
and if p < q, then p is chosen to be the Master, q to be the Slave, otherwise vice versa.

STEP 2 Master randomly decides if next move will be an exchange or a displacement. favoring the
latter by a factor of 5 to 1. The Master also decides randomly with equal probability
if the move will be an intraprocessor or interprocessor exchange/displace.

STEP 3.1 If MOVE = INTER-PROCESSOR EXCHANGE, processor p (Master) randomly selects a cell
CELL(p) with (x,y)-position POS(p) within its allocated area map and sends the data
structure of CELL(p) to processor q. Meanwhile processor q (Slave) also randomly
selects a cell CELL(q) with (x,y)-position POS(q) within its allocated area map, and
sends the data structure of CELL(q) to processor p.

STEP 4.1 Compute Aychange (CELL(p).CELL(g)) =
A(WL CELL (p ).POS(q).p) + A(WL CELL(q).POS(p).q)
+ A3(AO .CELL(p).POS (p).p) + ALAO CELL(p).POS(g)q)
+ As(AO .CELL(q).POS(q).g) + A(AO .CELL(q).POS(p).p)
+ A(EO .CELL (p).POS(p).p ) + Ay(EO .CELL(»).POS(gq)q)
+ Ao(EO ,CELL (g ).POS(q).q) + Ayo(EO .CELL(gq).POS(p).p)

STEP 5.1 Processor q sends the portion of the cost function it computed to processor p.
STEP 6.1 Go to STEP 7

STEP 3.2 If MOVE = INTRA-PROCESSOR EXCHANGE, processor p (Master) randomly selects two cells.
CELL (p) and CELL 5(p ). both within its allocated area map.

STEP 4.2 Compute A, epange (CELL (p ).CELL (p)) = A{(WL ,p) + A(AO ,p) + A3(EO .p)
STEP 5.2 Go to STEP 7

STEP 3.3 If MOVE = INTER-PROCESSOR DISPLACEMENT, processor p (Master) selects a cell CELL(p)
with position POS(p) within its allocated area map and sends the data structure for CELL(p)
along with the portion of the cost function it has computed to processor q (Slave). Processor

q selects a random position POS(q) within its area map and computes the remainder of
the cost function.

STEP 4.3 Compute Ayi,pics (CELL (p).POS(g)) = A,(WL .CELL (p).POS(g).q9)
+ A,(AO .CELL (p).POS (p ).p ) + Ay(AO .CELL (p).POS (g ).q)
+ A(EO CELL(p).POS(p).p) + As(EO CELL (p).POS(q)q)

STEP 5.3 Go to STEP 7.

STEP 3.4 If MOVE = INTRA-PROCESSOR DISPLACEMENT, processor p randomly selects a cell,
CELL (p ), and a position, POS (p ). within its allocated area map.

STEP 4.4 Compute Ay (CELL (p).POS (p)) = Ay(WL .p) + A(AO .p) + A3(EO .p)
STEP 7 Master accepts/rejects move using exponential function ACCEPT (DELTA .T')

END PROCEDURE;
Figure 3.4. Parallel moves in the hypercube.
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A move can be either an exchange or a displacement. Which of these is actually executed is
randomly chosen by the Master in STEP 2 of Figure 3.4. The ratio of single-cell displacements to
cell exchanges has a profound effect on the quality of the final placement. The best results were
observed to occur when the random selection favors displacements in a ratio of approximately 5 to
1 similar to the result reported in [10]. In addition, the Master decides if the exchange or displace-
ment move will be an intraprocessor (completely within the Master) or intérprocessor (between the
Master and the Slave). The best results were observed to occur when the number of intraprocessor

moves is equal to the number of interprocessor moves. Orientation mirroring of cells was not

implemented.

3.7.3. Cost calculation of exchange class move

We now discuss the cost function calculation for an interprocessor exchange, i.e., STEP 4.1. of
Figure 3.4, which is the most complicated of all the move types. (The case of an intraprocessor
exchange, STEP 4.2, is very simple.) We break up the task of calculating the cost of an interproces-
sor exchange move into 10 subtasks that are distributed equally among the Master and Slave pro-
cessors. The first term, A,(WL ,CELL (p ).POS(q ).p ) deals with the change in the wire length due
to the movement of CELL(p) from POS(p) to POS(q). This is calculated by estimating the change
in half the perimeter of the bounding box of each net. This term can be calculated by processor p
alone, since it keeps information about all the nets to which CELL(p) is connected, along with all
the (x.y) locations of cells that are on the same nets, and can read POS(q) (which is the new (z,y)
location for CELL(p)) from the message sent by processor q. The term
AWL .CELL (q).POS(p ).q) relates to the change in wire length due to the movement of CELL(q)
from POS(q) to POS(p), and is computed in an identical manner by processor q. The term
A3(AO .CELL (p).POS (p).p) deals with the change in the area overlap of cells due to the move-
ment of CELL(p) out of POS(p) and is calculated by processor p since it has information about all
the cells that are near a given (x,y) location within processor p’s area map. When CELL(p) is

moved out of location POS(p), it may remove area overlapping of cells. The term
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A4(AO ,CELL (p).POS(q ).q ) deals with the change in the cell area overlap due to the movement of
CELL(p) into POS(q) and is calculated by processor q since it has information about all the cells
that are near a given (x.,y) location within processor p’s area map. When CELL(p) is moved into
location POS(p). it might create additional cell area overlap. The terms Ag and Ag are similar calcu-
lations for CELL(q). The term A,(EO .CELL(p).POS(p).p) deals with the change in actual row
length compared to desired row length (edge overshoot or undershoot) wheh CELL(p) is moved out
of POS(p). and is calculated by processor p. The term Ag(EO ,CELL (p).POS (g ).q) deals with the
change in edge overshoot/undershoot when CELL(p) is moved into POS(q). and is calculated by

processor q. The terms Aq and A, are similar calculations for CELL(q).

3.74. Cost calculation for displacements

We now discuss how the cost function is calculated for an interprocessor displacement class
move, STEP 4.3. (The intraprocessor displacement calculation in STEP 4.4 is relatively straightfor-
ward.) We break up the task into 5 subtasks that are shared between the Master and the Slave pro-
cessors. The term A(WL .CELL (p).POS(g).q). computed by processor q. is the change in wire
length due to the movement of CELL(p) from POS(p) to POS(q). The term
A,(AO .CELL (p).POS(p).p ). computed by processor p, is the change in cell area overlap caused by
the movement of CELL(p) out of POS(p). The term A3;(AO0 .CELL (p).POS(gq).q). computed by
processor q, is the change in cell area overlap caused by the movement of CELL(p) into POS(q).
The term A (EO.CELL(p).POS(p).p). computed by processor p, is the change in edge
overshoot/undershoot caused by the movement of CELL(p) out of POS(p). The term

As(EO .CELL (p).POS (g ).g). computed by processor p. is the change in edge overshoot/undershoot
caused by the movement of CELL(p) into POS(q).

3.3. Annealing Schedule

In any simulated annealing algorithm, two important criteria are the choice of the initial tem-

perature and the rate of decrease of the temperature. For the choice of the initial temperature, we
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adopted the heuristic that at the initial temperatures, we should accept 95% of all moves for which
there is an increase in the cost function. Hence, prior to starting the actual annealing algorithm, we
calculate the change in cost functions for 10 X N (N = number of standard cells in circuit) single
moves within the hypercube. The average change, A, is calculated for those moves in which the
change in cost is positive. This average cost is then used to find a proper initial temperature using

the following formula:

T.. ==— A
" in(0.95)

The temperature of the system is then reduced after each stage of the algorithm according to
the cooling schedule given by

T 41 = o(i)T;

where a varies from 0.80 to 0.94 and decreases to 0.1 during the final stages of the algorithm. This
variation is table-driven, as shown in Table 3.1. By using this strategy, during the initial stages of

the algorithm virtually every new state is accepted and the temperature is reduced quite rapidly.

Table 3.1. Variation of alpha with temperature.

For Temperature o
Greater Than

40,000 0.80

20,000 0.34
10,000 0.88 -

5.000 0.91

200 0.94

100 0.90

50 0.85

5 0.80

1.5 0.70

0 0.10
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During the intermediate stages of the algorithm, the temperature is reduced in such a way that the
average change in cost AC for proposed moves is approximately equal from iteration to iteration.
When the temperature is reduced below 1.5, rapid reduction in temperature is initiated in order for
the system to firmly converge to a local minimum of the cost function. The final stopping criterion

is satisfied when the temperature reaches a minimum value of 0.1.

In order to enhance convergence during the later stages of the algorithm, a range limiting
mechanism is incorporated similar to TimberWolf [10]. For single intraprocessor displacements, a
rectangular window is centered at the center of the cell to be displaced. A row is randomly
selected which intersects the window and is within the locally allocated work space. A random
position is then selected within that row and within the window or locally allocated work space.
which ever is smaller. For proposed pairwise cell exchanges and interprocessor displacements. a
move is attempted only if (1) the vertical distance between the change in movement of cell(s) is
less than or equal to the vertical span of the range limiter window and (2) the horizontal distance

between the change in movement of cell(s) is less than or equal to the horizontal span of the range

limiter window.

Initially when the temperature is at its maximum value, the horizontal and vertical span of
the range limiter window are equal to twice the span of the corresponding dimension of the physi-
cal work space. After the initial temperature is determined, the approximate number of decades.
d, from zero is determined. Because it is desirable to have the window size shrink slowly, the hor-
izontal and vertical window spans are made proportional to the logarithm base 10 of the value of

the temperature. The actual formula controlling the respective window dimensions are shown

below.

—'_—Wim;owx = MAX [3.;1,-’“?@ log10(0-2temperature )]

—'—'m;ow = MAX (3.;17r~fpm logyq(0.2¢emperature )]
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Regardless of row separation, the vertical range limiter is restricted from reducing below the dis-

tance needed for inter-row movement until the temperature of the system drops below 5.

At high temperatures during the simulated annealing process, we do not restrict the distance
over which exchanges and displacements of cells can occur. Gradually, as the temperature is
decreased for each processor, the range limit is also decreased accordingly until eventually certain
dimensions of the hypercube are “frozen,” i.e.. changes between pairs of procmors connected via

those dimensions are effectively inhibited.

At each new temperature, the system is allowed to stabilize. This is accomplished by collec-
tively attempting to generate a user-specified number of new states per cell at each
stage/temperature of the system. For example, given a 1000 cell circuit for which a user wishes
300 attempts per cell, 300000 new states per stage/temperature will be attempted. The number of
attempts per cell is directly proportional to the running time of the algorithm, and is the only user
specified parameter which influences the run time. Large numbers of attempts per cell will give
better placement but at the cost of excessive execution times. In general, to get the best perfor-

mance to execution time ratio, Table 3.2 should be used as a guideline for various size circuits.

Table 3.2. Suggested attempts per cell for various size circuits.

Number of Suggested Number of
Cells in Circuit Attempts per Cell

<300 100

500 200

1000 300
1500 400
2000 500
2500 600
3000 700
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3.9. Broadcasting New Cell Locations

Once the cells have been moved to new locations, these updated locations have to be sent to all
processors so that they can update all net and pin information affected by the move. Two schemes

for performing this task were investigated.

The first one uses uses the property of the existence of Hamiltonian circuits in the hypercube
topology [55]. This scheme operated in the following manner. Each ;':rocessor which has an
updated cell location informs its Hamiltonian circuit successor of the updated value of the cell
location. This processor would then inform its Hamiltonian circuit successor which would do the
same. It can be easily seen that if all P processors contained updated cell locations, it will take P-1
time steps for all the updated cell locations to be available at all the processors. Figure 3.5 shows a
three-dimensional hypercube with labels on processing nodes and links. Using this simple scheme,
if processor 0, which is labeled MO, has an updated cell location to broadcast throughout the hyper-
cube, a possible Hamiltonian circuit is MO, M1, M3, M2, M6, M4, M5, M7. This broadcast uses
links L1, L2, L3, Li2, L8, LS, and L6 requiring 7 time steps. Since each message transfer is
extremely expensive, we decided to abandon this simple scheme and adopt a more complicated but

extremely efficient one.

In the second scheme, each processor having a set of new cell locations broadcasts this infor-
mation to all its log(P) neighbors in the first time step along its links in log(P) dimensions. In the
next time step, the processors that have just received these messages from the first time step for-
ward the messages to their own neighbors connected via links in the higher-most log(P)-i-1 dimen-~
sions where i equals the dimension of the link along which a message was received during the first
time step. In the j** time step, all processors receiving messages from the j—1% time step forward
the messages to their neighbors in .the higher most log(P)-i-1 dimensions where i again equals the
dimension of the link along which a message was received during the j’—l" time step. In the case
of multiple initial processors wanting to broadcast modified cell locations, the messages are com~

bined where needed at intermediate nodes before forwarding. This scheme guarantees that the
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broadcasting is completed in log(P) time steps without conflicts for links. Figure 3.5 shows a
three-dimensional hypercube with labels on processing nodes and links. Table 3.3 shows the steps

involved in broadcasting updated cell locations from processors 1, 2, and 7 which are labeled as

M1, M2, and M7 in Figure 3.5.

The entries in Table 3.3 are of the form Mi(j,k) which represents a message which originated
from processor P; during the first time step and moves from processor P, to P, during the current
time step. For example, in time step 2, message M7(6.4)., which has originated from P, is
transmitted from processor P¢ to P4 along a dimension 1 link. It can be verified that all messages
reach all processors within 3 time steps. In case of conflicts for using a particular link at a particu-
lar time step, messages are combined. For example, in time step 2, link L9 has two messages
M1(0,4) and M2(0,4) which represent messages originating from processors P; and P, but moving

from P, to P4 during time step 2.

A unique feature of our algorithm is that once messages are combined for transmission over a
particular link, they need not be split up at intermediate nodes for transmission over separate
links. The process of updating cell locations will take part at all nodes by extracting information

from the received messages and using this information to modify locally affected cell structures.
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Figure 3.5. Three-dimensional hypercube.

Table 3.3. Broadcast steps for three-dimensional hypercube on a message from nodes 1,2, and 7.

link STEP 1 STEP 2 STEP 3
number
L1 M1(1,0)
L2 M1(1.3) M2(3.1)
L3 M2(2.3)
L4 M2(2.0) M1(0.2)
LS
L6 M7(7.5) .
L7 M7(7.6) _
L8 M7(6.4)
L9 M1(0.4) M2(0.4) | M7(4,0)
L10 M1(1,5) M7(5.1) M2(1.5)
L11 M7(7.3) | M1(3,7) M2(3.7) _ )
L12 M2(2,6) M7(6.2) M1(2.6)
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CHAPTER 4

ALGORITHM IMPLEMENTATION AND PERFORMANCE

4.1. Implementation

The advantage of our algorithm over TimberWolf is that it is much faster. We have imple-
mented the algorithm in about 4,500 lines of C code. Due to the unavailability of an actual Intel
hypercube at the present time at the University of Illinois, initial testing of this algorithm has been
completed using the Intel iPSC Simulator running on a SUN 3/50 work station system under UNIX

4.2 [43]. Initial algorithm testing has only been attempted on a small scale due to excessive simula-
tor execution times.
4.2. Placement Results

It should be noted that in the parallel annealing scheme, since we have deviated from the

serial acceptance of moves, we cannot assume the convergence properties of the annealing algo-

rithms to be valid. The theoretical convergence properties are still a subject of future research.

However, we have experimented with positive results on a2 wide variety of standard cell circuits.

some of which were randomly generated. others were obtained from industry and universities.

We will first report the the performance of our algorithm on a 16-processor hypercube using a

small 64-standard cell circuit, which was randomly generated and has several clusters of cells with

high connectivity. At each temperature of the annealing process, approximately 100 new states
were attempted per cell. After 45 temperature reductions, the stopping criterion was satisfied with
the final cell placement (Figure 4.1) showing excellent clustering characteristics. We have also
implemented a uniprocessor version of the simulated annealing algorithm which is slightly simpler
than TimberWolf in that the only moves that are allowed are exchanges and displacements and

only standard cells are handled (no macro—cells or pads). Also as in the parallel algorithm
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implementation, there is no hashing to enable fast search among cells for overlaps. The resuits of
the final placements for that implementation are shown in Figure 4.2. Our parallel algorithm gives
a final placement cost that is 10% better. The final placement cost for several standard circuits and

percentage improvement in placement for the parailel algorithm over the uniprocessor algorithm

are shown in Table 4.1.

The effect of the parallel simulated annealing was studied at each temperature In Figure 4.3,
it can be seen that the system cost (which can be calculated exactly in the hypercube only through
additional message transfers) is a continuously decreasing function of temperature. This validates
empirically that even though the acceptances/rejections of moves were performed on the basis of

outdated information, our algorithm has the same general convergence property as the uniprocessor
algorithm.

Figure 4.4 shows the variation of the percentage of exchanges and displacements‘ that are.
accepted with temperature. It is clear that in the initial stages of the algorithm (higher tempera-
tures), a large percentage of both types of moves are accepted. As the temperature is decreased, the
percentage of acceptances of both types of moves decreases. However, at extremely low tempera-
tures, the percentage of acceptances of displacements increases with practically no acceptance for
exchanges. The increase in the acceptance of displacements is primarily due to only intraprocessor

displacements being attempted as governed by the implemented range limiter.

43. Timing Estimates

Since we did not have access to an Intel hypercube at the University of Illinois to evaluate the
speedup of our algorithm, we present here an estimate of the expected speedup. The Intel Simula-
tor does not give any timing information for message communication, so timing has to be estimated
from other sources. The running time of the algorithm depends on two separate components: Com-~

putation and Communication. We will present estimates of both in the following sections.
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Table 4.1. Placement wiring length comparison

Number | 4-dimensional | TimberWolf | Percentage
Cells Hypercube Change
64 29248 32135 10%
183 63094 76498 21%
286 96778 115359 19%
469 159759 195066 22%
]

]
§ :
2
1
I
1072 1 10? 1 n® 10t
Temperature

Figure 4.3. Temperature vs cost

Temperature
Figure 4.4. Temperature vs percentage accepted moves
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43.1. Computation

To evaluate the computation cost per move (exchange and displacement), we implemented our
algorithm on a single processor of the Intel hypercube simulator. We performed 1000 random
moves of both the exchange and displacement classes and evaluated an average computation time.
The results of these tests are given in Table 4.2. The CLOCK command in the simulator gives the
running time on the machine on which the simulator is running, which was a SUN 3/50 work sta-
tion using a Motorola 68020 CPU which is rated to be 2.7MIPs [56]. The Intel hypercube nodes
consist of Intel 80286 CPUs which have been reported to be 0.78MIPs [37] or 3.5 times slower than
the Motorola 68020 for the predominantly integer-oriented computation performed in our algo-

rithm. Hence, the computation time per move on the Intel hypercube will be greater as given in

Table 4.3.

4.3.2. Communication costs

We will use the results of some benchmark studies performed by Reed and Grunwald at the
University of Illinois on communication costs on the Intel iPSC [38]. The results are summarized
in Figure 4.5, which shows the delay in transfer of messages of varying size for simultaneous

exchanges and unidirectional message transfers along a link in the Intel iPSC. We therefore need to

Table 4.2. Move timing requirements on MC68020 in milliseconds.

Number | Intraprocessor | Interprocessor | Intraprocessor | Interprocessor
Cells Displace Displace Exchange Exchange

Master  Slave Master Slave
64 5 3 4 7 4 3
183 8 4 5 10 8 7
286 10 . 5 7 11 9 8

469 10 6 8 11 9 8 B

800 11 6 8 11 10 9
2357 11 7 9 13 10 9




Table 4.3. Move timing requirements on 80286 in milliseconds.

Number | Intraprocessor | Interprocessor | Intraprocessor | Interprocessor
Cells Displace Displace Exchange Exchange
Master Slave Master Slave |
64 15 9 12 21 | 12 9
183 24 12 15 30 24 21
286 30 15 21 33 27 24 | _
469 30 18 24 33 27 24
800 33 18 24 33 30 27 _
2357 33 21 27 39 30 27_.}

%
[
i}
Hy
5 4
[ ] ™ : T ]l T : T = M Jl
. = - - - 1=
Packet Size (bytes)

Figure 4.5. Link delay for various packet sizes.
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estimate what the average packet size will be for different types of messages in order to determine
communication costs. During the distributed cost calculation phase, the entire data structure for a
candidate cell is sent to a neighboring processor over a single linklin the hypercube. Table 4.4
shows the range of message sizes for various size standard cell circuits and corresponding required

communication times derived from Figure 4.5.

4.3.3. Expected speedup

By combining these timing results and taking into account the parallelism involved in the cal—

culation of the move cost. the time to complete each of the four types of moves was calculated as

given in Table 4.5. The time required to broadcast updated cell information has been shown in Sec-
tion 3.9 to require only log(P) communication steps. On the average, only 28 bytes of information
are needed in each broadcast message for each individual change in a cells position. Combining of
packets at intermediate nodes causes the intermediate time steps in the algorithm to be slower than
the earlier and later stages. A complete broadcast cycle for a six-dimensional hypercube should
require approximately 18.2 milliseconds if all nodes have a cell whose movement needs to be

broadcast to the rest of the system. Unfortunately, each node in the Intel hypercube is not able to

Table 4.4. Memory usage for standard circuits.

Number | Memory Usage (bytes) | Link
Cells min max avg Delay
64 99 688 448 | 2.3 ms
183 68 792 272 2.5 ms
286 ;| 36 844 214 | 2.4 ms
469 76 724 250 2.5 ms
800 68 1732 473 2.8 ms
2357 36 792 254 | 2.5ms

i '

! '
i
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Table 4.5. Estimate of time to complete the four types of.
moves in milliseconds using Intel hypercube

Number | Intraprocessor | Interprocessor | Intraprocessor | Interprocessor

Cells Displace Displace Exchange Exchange _
64 15.0 15.6 21.0 15.6
183 24.0 18.1 300 |.. 271
286 30.0 24.0 33.0 30.0
469 30.0 270 33.0 30.0
800 33.0 27.6 33.0 33.6
2357 33.0 30.0 39.0 33.0

actively use all of its log(P) links at the same time due to architectural limitations. Thus, the
actual number of simultaneous messages that can be transmitted/received will be somewhere
between 2 and log(P). In the worst case only a single exchange of data between processing nodes

can occur; hence, a complete broadcast cycle for a six-dimensional hypercube will require approxi-

mately 64.7 milliseconds.

Using these estimates, we can determine the expected speedup of our parallel algorithm over a
similar uniprocessor version. If our algorithm were to be run on a six-dimensional hypercube using
the 800-cell standard circuit, then at each iteration, 32 parallel moves will be attempted. It is to be
expected that at least one of these moves will be an int\raprocmor exchange which will be the
bottleneck in terms of timing. The time to complete these 32 moves and update will be between
51.2 ms and 97.7 ms depending on update broadcast timing. For a uniprocessor version of this
algorithm, the 32 moves will be distributed in a 5 to 1 ratio between displacements and exchanges.
Computational time will thus be (25.6 X 33) + (6.4 X 33 + 16) = 1072 ms with the additional 16
ms added for time to complete updating of cell structures. In the hypercube, this updating is done
while waiting for communications. Using these rwuits. the estimated speedup of the Intel hyper-

cube over the uniprocessor version will be somewhere between 11 and 21. Speedup estimates for

other standard circuits are given in Table 4.6.



Table 4.6. Time to complete 32 moves in milliseconds.

Number | Uniprocessor | six-dimensional Hypercube Speedup

Cells min max . min max
64 528 39.2 85.7 62 135

183 817 48.2 94.7 86 17.0
286 991 51.2 97.7 10.1 194
469 993 51.2 97.7 102 194
800 1072 51.2 97.7 11.0 209
2357 1102 572 103.7 106 193

48
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CHAPTER 5

IMPROVED UNIPROCESSOR ALGORITHM

5.1. Introduction

Recently, many researchers have started to investigate speeding up simulated annealing algo-
rithms by running them on parallel processor systems [11, 13, 14, 15, 54, 57). Many of these
parallelized placement algorithms have not only been found to be considerably faster but also to
converge to a final placement which is more optimal than similar uniprocessor simulated annealing
algorithms. For example, our parallel version of the simulated annealing algorithm shows an aver-
age final placement improvement of 19% over a similar uniprocessor algorithm for a variety of

industry standard circuits as has been shown in Table 4.1.

The better performance of these parallel algorithms appears to be caused by the restrictions
the parallel implementations place on the distances over which moves can occur and the use of
slightly outdated cell placement information caused by multiple moves that interact with each

other being accepted at each parallel iteration.

In the following sections of this chapter, we present an improved standard cell placement
algorithm based on simulated annealing which incorporates several features inherent in a parallel
processing environment. These features involve incorporating two techniques: (1) allowing multi-
ple cell movements to be considered before updating cell placement data, thus making cost calcula-
tions based on slightly outdated placement data; (2) having the maximum range of cell movements

controlled by a windowing technique which favors certain ranges.

S.2. Overview of New Algorithm

An improved algorithm can be derived which takes advantage of the performance enhance-

ments that appear to come from parallelizing the uniprocessor simulated annealing algorithm. An

algorithmic outline of this new algorithm is given in Figure 5.1.
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STEP 1. Perform initial random placement of N standard cells
STEP 2. Determine initial temperature.

STEP 3. While "Stopping criteria” : temperature < 0.1 not reached
STEP 4. Generate new temperature

STEP 5. For inner_loop_count = 1 to ( N X attempt__parameter )

STEP 6. Randomly select type of move (exchange or displacement)
with distance of cell movement probabilisticly determined

STEP 7. Check "range-limiter”

STEP 8. Evaluate change in cost for move

STEP 9. Accept/reject move using exponential function

STEP 10. IF the number of accepted moves is equal to limit (max_accepied)

THEN updste all saved cell positions and zero number of accepted moves counter
ELSE increment accepted moves counter and save cell movements in temporary storage

STEP 11. ENDFOR;
STEP 12. ENDWHILE;

Figure 5.1. Improved simulated annealing algorithm.

The important difference between this algorithm and the previously discussed uniprocessor algo-
rithm is that a condition has been added which controls when cell placement data are updated.
Also, the generate function has been changed to allow for the distance over which moves take
place not to necessarily be uniformly distributed throughout the work space. Although this algo-
rithm appears to be identical to the parallel version, it should be noted that in the uniprocessor

environment we have much more freedom in implementation over a parallel environment.

5.3. Use of Pseudoparallel Moves

In Figure 5.1, a conditional data update statement has been added which allows a multiple

number of accepted moves to accumulate before an update of the circuits placement is done. This
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amounts to having all moves after the first successful move to have outdated placement informa-
tion on which to determine the cost function. For example, in Figure 5.2, if module M1 is success-
ful in performing a displacement from (x,. y,) to (x,. y;) during the first iteration of the inner
loop. then the circuit should be as shown in Figure 5.3, but because M1°'s position is not updated,
the remainder of the cells still calculate cost functions which involve M1 as though it were still at
position (x;. y;). Because of this, if module M2, which is connected to M1 via a net connection, is
chosen for an attempted move during iteration two, then the half-perimeter wiring cost associated

with the net will be computed using the old position of M1.

After each move acceptance, a counter is incremented to keep track of the number of success-
ful moves, since the last cell position update and the new positions of the cells are placed in tem-
porary storage for use later in updating the cell positions. Random cell selection for movement in
subsequent iterations is not able to select cells which have made successful moves, but whose posi-

tions have not yet been updated. This amounts to freezing the cells’ positions until the required

(11-)'1) (81-)'1)

Figure 5.2. Original net placement. 5.3. Placement after initial acceptance.
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number of moves has been accepted. After a specified number of successful moves, the conditional
if statement criterion will be satisfied, and all cell positions will be updated using the information

saved in temporary storage.

The effect of using slightly outdated information appears to give a higher probability of get-
ting out of local minima., since this technique will accept a higher percentage of moves with uphill
changes in the cost function. The accept function limits the magnit.udi.er 61" uphill moves but does
not affect the total number. The number of uphill moves is affected by the random cell selection
and the "observed"” placement. By having the observed placement slightly different from the actual
placement, it appears more uphill moves are accepted. By having greater numbers of uphill moves

which are all limited in magnitude by the accept function, the probability of getting out of local

minima is increased.
5.4. Use of Multiwindowing

Another way of increasing the number of uphill moves is to favor movement of cells over
small distances. These types of moves will tend to have smaller changes in the cost function after
initial clustering of cells in the first few iterations of the algorithm has been completed. In the
parallel versions of the simulated annealing ﬁlacement algorithm, it appears that the average dis-
tance a cell moves in the course of the algorithm has a profound affect on the final placement.

Specifically, it appears that movement of cells should be biased so that movement of cells is res-

tricted more to their local vicinity.

In most of the versions of the placement algorithm, a range limiter connected with the tem-
perature of the system is incorporated which limits the distance any movement of cells can have.
This means at high temperatures a cell will have uniform probability of moving anywhere in the
physical circuit space. From observation of parallel algorithms it appears that this probability

should not be uniform if optimal convergence is desired, but should favor certain distances.

Parallel simulated annealing algorithms running on message-passing architectures are con-

strained to certain probability distributions because of the way the cells are mapped to the
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individual processors, i.e., the movement of cells from one section to certain other sections in the
physical circuit space is not possible in a single move because processing nodes controlling those sec-
tions of the circuit space are not directly connected. A uniprocessor version of the simulated
annealing algorithm is not constrained in this manner and thus can incorporate rather complex win-
dowing techniques and distance probability distributions. For example, in Figure 5.4 and Table
5.1, if cell M was picked to perform a displacement, a simple triple windowing scheme could be
used to determine where the cell will be displaced to. In Figure 5.4, the outermost window (W1) is

always equal to the physical work space of the circuit. The inner windows, W2 and W3, have sizes

E

W1

Figure 5.4. Example use of windowing in determining cell movement for cell M.

Table 5.1. Example window specifications.

Window Fraction of Example Probability
Max Dimension Size Within Window

i
|

- - - - ‘
" ¢

| w1 | 1 120 X 10 25% S
N N W2 2/3 72X 60 25% S
w3 1/3 36 X 30 50% L




54

proportional to 2/3 and 1/3 of the physical work space and are centered about cell M. In order to
favor local movement, the probability of being in the innermost window (W3) is made greater than
being in the outer windows. In Figure 5.4, cell M has a 50% probability that its proposed new posi-
tion will be within the innermost window W3, a 25% probability of being within window W2 but
not window W3, and a 25% probability of being in the physical work space but not within win-

dows W2 or W3. Because of the affect of the continuously reducing range limiter, the affect of

windowing disappears in the later stages of the algorithm when the range limiter limits m_ovemerit )

- of cells to within the confines of the innermost window.

5.5. Placement Results

The advantage of this algorithm over conventional, uniprocessor simulated anm;aling algo-

rithms such as TimberWolf is that it converges to a better final placement in a given amount of

time. We have implemented the algorithm in the C programming language on a Gould 9050 com~-

puter system, running under UNIX 4.2. Initial algorithm testing has only been attempted on a

small scale due to excessive execution times.

The theoretical considerations of whether the annealing properties are still preserved when the

cost calculations are based on slightly outdated information and when moves are not uniformly

distributed, is a subject of future research. Experimentally, the improved algorithm has been

shown to operate correctly for a wide range of standard industry circuits of varying sizes and com-

plexities.

l
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We will first report the performance of this algorithm using a small 64-standard cell circuit, = . .

which was randomly generated and has several known clusters of cells with high connectivity. At

each temperature of the annealing process, approximately 100 new state moves werg'xit_.’tenipt,réd‘b::

cell. A total of 45-temperature reductions was required before the stopping criterion of tempera-

ture<0.1 was satisfied.

Initial testing was performed to ascertain the effects of using multiwindowing and multiple -

moves before update. A variety of tests were run in order to derive the optimal combination of
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these two techniques. The first set of tests was concerned with determining the optimal number of
moves that should be accepted before cell updating is performed. Table 5.2 shows the final place-
ment cost associated with waiting for various numbers of multiple moves before placement update.
For these tests, no windowing was attempted, and thus movement of cells was unrestricted and
uniformly distributed. Table 5.2 shows final placement costs generally decreasing as the number
of multiple moves is increased. The optimal solution occurs when 16 ‘moves have to be accepted

before placement update will occur.

Simple testing of a few windowing schemes using 16 multiple moves showed consistent
decreases in final placement cost over using windowing alone as seen in Table 5.3. Because of this,
the remainder of the windowing scheme testing was performed using 16 multiple moves. A
variety of windowing schemes were experimented with as shown in Tables 5.4 through 5.10. The
number and size of windows for each test vary over a wide range. For example, in the ninth entry
of Table 5.9 a triple windowing scheme is used with the largest window being equal to the physical
work space; the second window being equal to 2/3 the size of the physical work space, and the

third window equal to 1/3 the size of the physical work space. The two smaller windows are

Table 5.2. Cost vs number of multiple moves for 64-cell circuit.

Number of Final Percentage
Multiple Moves | Placement Cost Change

1 24125 +0.0% -
2 24138 +0.1% —
4 24003 -0.5%
8 . 23984 -0.6%

12 23924 -0.8%

16 23821 -1.3% S

24 24173 +0.2%

32 24829 +2.9%
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Table 5.3. Comparison of final cost for using or not using 16 multiple moves.

Number | Window Sizes Distribution of Final Cost Final Cost
Windows as Fraction Moves in Windows | no multiple moves | with multiple moves
of max
1 1 100% 24125 . 23821
2 1:% 20% : 80% 23872 22893.
2. 1:% 13%:87% 24312 23654
2 1:% 10% : 90% 24231 23823 . .} .
3 1:2/3:1/3 10% : 30% : 60% 23890 22148
4 1:%:%:% | 6%:12%:24%:58% 23537 22813

Table 5.4. Comparison of cost vs distribution for (1 :

14) double window.

Number | Window Sizes Distribution of Final | Percent
Windows as Fraction Moves in Windows | Cost | Change-! -
of max

1 1 100% 23821 -1.3%

2 1:% 50% : 50% 24017 | -0.4%

2 1:% 33%:67% 23715 | -1.7%

2 1:Y% 25% : 75% 22783 | -5.6%

2 1:% 20% : 80% 22893 | -5.1%

2 1:% 0% : 100% 23990 | -0.6%

Table 5.5. Comparison of cost vs distribution for (1 :

15) double window.

Number | Window Sizes Distribution of Final | Percent
Windows | as Fraction Moves in Windows | Cost | Change i
of max
1 ' 1 100% 23821 | -1.3%
2 1:% 33%:67% 23935 -0.8%
2 1:% 20% : 80% 24123 -0.0%
2 1:% 17% : 83% 23543 -1.2%
2 1:% 13% : 87% 23654 -2.0%
2 1:% 0% : 100% 24143 +0.1%
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Table 5.6. Comparison of cost vs distribution for (1 : %) double window.
Number | Window Sizes Distribution of Final | Percent
Windows | asFraction | Movesin Windows | Cost | Change
of max

1 1 100% 23821 | -1.3%

2 1:% 20% : 80% 23911 { -0.9%

2 1:% 15% : 85% 23831 | -1.2%

2 1:% 12% : 88% 23784 | -1.4%

2 1:% 10% : 90% 23823 | -1.3%

2 1:% 0% : 100% 23741 | -1.6%

Table 5.7. Comparison of cost vs distribution for (1 : 1/3) double window.

Number | Window Sizes Distribution of Final | Percent
Windows as Fraction Moves in Windows | Cost | Change
of max

1 1 100% 23821 | -1.3%

2 1:1/3 50% : 50% 23798 | -14% |

2 1:1/3 33%:67% 22417 | -71% |

2 1:1/3 20% : 80% 22098 | -8.4%

2 1:1/3 10% : 90% 23531 -2.5%

2 1:1/3 0% : 100% 23784 | -1.4%

Table 5.8. Comparison of cost vs distribution for (1 : 2/3) double window.

Number | Window Sizes Distribution of Final | Percent
Windows as Fraction Moves in Windows | Cost | Change
of max _
1 1 100% 23821 | -1.3%
2 1:2/3 25%:75% 23431 | -2.9%
2 1:2/3 20% : 80% 23627 -2.1%
2 1:2/3 13% : 87% 24015 | -0.5% | .
2 1:2/3 10% : 90% 23923 | -0.8%._
2 1:2/3 0% : 100% 23815 | -1.3% .
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Table 5.9. Comparison of cost vs distribution for (1 : 2/3 : 1/3) triple window.

Number | Window Sizes Distribution of Final | Percent
Windows as Fraction Moves in Windows | Cost | Change
of max
1 1 100% 23821 -1.3%
3 1:2/3:1/3 17%:35%:48% | 23654 | -2.0%
3 1:2/3:1/3 12% : 24% : 64% 23104 -4.2%
3 1:2/3:1/3 10% : 20% : 70% 23248 -3.6%
3 1:2/3:1/3 9% : 18% : 73% 23187 -3.9%
3 1:2/3:1/3 12% : 36% : 52% 22731 -5.8%
3 1:2/3:1/3 10% : 30% : 60% 22148 -8.2%
3 1:2/3:1/3 %9 :27% : 64% 22314 -7.5%
3 1:2/3:1/3 8%:24%:68% | 21643 | -10.2%
3 1:2/3:1/3 10% : 40% : 50% 23007 -4.6%
3 1:2/3:1/3 8% :40% : 52% 23721 -1.7%

Table 5.10. Comparison of cost vs distribution for (1 : 3% : % : 14) quadruple window.

Number | Window Sizes Distribution of Final | Percent
Windows as Fraction Moves in Windows Cost | Change
of max
1 1 100% | 23821 -1.3%
4 1:%:%:% | 10%:20%:30%:40% | 23764 -1.5%
4 1:%:%:% 9% :18% :27% : 46% | 23521 -2.5%
4 1:%:%:% 8% :16% :24% :52% | 23902 -0.9%
4 1:%:%:% 8% :16% :32%:44% | 23782 -1.4%
4 1:%:%:% 6% :12%:24% : 58% | 22813 -5.4%
4 1:¥%:1¥2:% 5% :10%:20%:65% | 21032 | -12.8%
4 1:%:%:% 4% :8% :12%:76% | 22314 -7.5%
4 1:%:%:% 0% :12%:24% : 64% | 23431 -2.9%
4 1:%:%:% 0% :10% :20% : 70% | 22946 -4.9%
4 1:%:%:% 0% :6%:24% : 70% | 23007 -4.6%

centered about the candidate cell for movement. The probability of a cell moving to within each of
these windows but not smaller subwindows is distributed as 8%, 24%. and 68%, respectively. The

final cost using this windowing scheme is 21643, which is 10.2% less than would be derived by an
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algorithm which does not use multiple moves or windowing.

Several generalized results can be deduced from these tables. In Tables 5.5, 5.6, and 5.8,
where the inner windows are not significantly smaller than the physical work space, the final
placements tend to be decidedly inferior. This is in agreement with an earlier observation that the
movement of cells should be localized to the area immediately surrounding the cell. This statement
is reinforced by noting that in all the windowing schemes, better perforiﬁﬁﬁce is generally obtained
as the percentage of localized moves is increased. For example, in Table 5.7 if the percentage of
moves into the innermost window is increased from 50% to 80%, a 7% decrease in the cost of the
final placement results. It appears that a larger number of windows, such as in Tables 5.9 and
5.10, will give the best final placement results if the probability of movement farther away from

the initial position decreases at least linearly with distance.

The effect of the modified simulated annealing algorithm was studied at each temperature. In
Figure 5.5, it can be seen that the system cost is a continuously decreasing function of temperature.
This validates empirically that even though we are performing the accepts/rejects on the basis of

outdated information, our algorithm has the same general convergence property as the uniprocessor
algorithm.

Figure 5.6 shows the variation of the percentage of exchanges and displacements that are
accepted with temperature. It is clear that in the initial stages of the algorithm (higher tempera-
tures), a large percentage of both types of moves are accepted. As the temperature is decreased, the

percentage of acceptances of both types of moves decreases.

The best final placement was obtained using a quadruple windowing technique with 16 multi-
ple moves before update. The final cell placement, as shown in Figure 5.7, shows excellent cluster-
ing characteristics. Figure 5.8 shows the final placement resulting from using no windowing or

multiple moves. Even visually, the clustering in Figure 5.7 appears to be better than in Figure 5.8.

A few of the more promising windowing schemes were applied to two larger industry stan-

dard circuits of sizes 183 and 286 cells with promising results, as shown in Table 5.11.
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Table 5.11. Comparison of cost vs windowing scheme for industry standard circuits.
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Number | Number | Window Sizes Distribution Final | Percent

Cells Windows as Fraction of moves Cost Change
of max in windows o ,

183 1 1 100% 76498 | +0.0%
183 2 1:1/3 20% : 80% 67159 | -12.2%
183 3 1:2/3:1/3 8% :24% : 68% 69010 -9.8% | __
183 4 1:%:%:% | 53%:10%:20%:65% | 650034 | -15.0% |
286 1 1 100% | 115359 +0.0% :
286 2 1:1/3 20%:80% | 102398 | -11.2% | .
286 3 1:2/3:1/3 8% :24% :68% | 102478 | -11.2%
286 4 1:3%:%:% | 5%:10%:20% :65% 98312 | -14.8%
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CHAPTER 6

CONCLUSIONS

6.1. Summary of Results

In this thesis, we have presented a parallel version of the simuhté& 'annealing technique for
solving the standard-cell placement problem that is targeted to run in a local memory message-
passing, parallel processing environment, namely the hypercube computer [54). We have presented
an improved algorithm that reduces the communication overhead, can handle more features of the
placement problem, and is specifically targeted to run on the Intel hypercube. We have presented a
novel tree broadcasting strategy for the hypercube that is used extensively in our algorithm for
updating cell locations in the parallel environment. We have implemented the algorithm on an
Intel hypercube simulator. We reported on the performance of our algbrithm on actual standard
cells used in industry [57). We also presented some accurate estimates of the execution time for the
algorithm. Qur algorithm will not give rise to oscillations because we have a number of cells
assigned to each processor, and cells are chosen randomly for possible exchange. Unlike the con-
ventional array algorithms for module placement, our proposed algorithm will thus not get stuck
at local minima. The possibility of choosing the same pair of cells for repeated exchange (oscilla-
tions) is very low. Cell exchanges can be performed among nearest neighbors through our novel
area-mapping technique and also between cells that are large distances away. The results show
that our parallel algorithm is not only faster but also gives better final placement results than the

uniprocessor simulated annealing algorithms.

We also presented an improved uniprocessor simulated annealing algorithm based on results
obtained from parallelization of the simulated annealing algorithm. We have implemented an algo-
rithm which performs multiple moves before updating the circuit placement and uses a multiwin-

dowing technique to generate new candidate circuit configurations. We have shown that this new
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uniprocessor algorithm consistently converges to a final placement which is more optimal than con-
ventional uniprocessor simulated annealing algorithms and does so for a variety of industry stan-

dard circuits.
6.2. Future Research

6.2.1. Hypercube algorithm

The ability to propose and evaluate moves efficiently is a requirement of any iterative algo-
rithm. In the present version of the parallel hypercube algorithm the efficiency of computation has
not been optimized as much as it can be. Future versions of the algorithm need to incorporate
structures for the cells and nets which allow arrangement so that connectivity and spatial location
are quickly available. A simple way to accomplish this for determining cell overlap is to sort cells
into bins according to their location within a particular row. This will allow for the use of quick-
sorting algorithms to isolate a smaller subset of cells which need to be checked for overlap instead
of exhaustively checking all possible cells. Presently, in the updating of cell positions after a move
has been accepted, an exhaustive search of all nets and pins is completed to find all references to
modified cells. Additional information in the cell update broadcast packet containing the identity
of all nets and cells which have references to the given modified cell and need to be updated, would

decrease computation time considerable.

The prwenf version of the parallel simulated annealing algorithm uses a simplified version of
the standard cell placement problem. In particular, macro blocks, pads. and orientation mirroring

movements have not yet been incorporated.

Because of the high cost of communication in comparison to computation, new strategies for
reducing the amount of wmuﬂuﬁon or performing simultaneous computations should be inves-
tigated. For example, since the initial exchange of full-cell specification structures is very expen-
sive, maybe a smaller message only containing that information that is initially needed for cost

comparison should be exchanged between cooperating node pairs. While this information is being
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used to calculate the change in cost, the full-cell-specification structure can be transmitted simul-
taneously. Also, since approximately half of all moves are intraprocessor not requiring any com-
munication overhead. the system may be able to be synchronized so that every other move is
intraprocessor, and thus no communication will be required. This will reduce execution time, since
on the average at least on pair of processing nodes in the system will be doing an interprocessor
movement, and thus, the rest of the processing pairs will have to wait for it to complete before

attempting the next set of moves.

The biggest area for future research is in attempting to execute this algorithm on an actual
hypercube in order to get actual run time statistics. This information can be used to verify the

expected performance of the algorithm and also may show areas for improvement that have not yet
been identified.

6.2.2. Enhanced uniprocessor algorithm

The majority of the results presented for the improved uniprocessor algorithm are only based
on experimentation with a8 small, 64-cell circuit. Although a few tests were run on larger circuits
with promising results, future research needs to be done to determine the optimum number of ‘mul-
tiple moves and windowing distribution to use in relation to the size and complexity of the candx-
date circuit. Performance of our uniprocessor algorithm on larger standard circuits is better than a
conventional simulated annealing algorithm, but still a little less than the placements obtained
when using the hypercube algorithm. It appears that a characteristic of the hypercube environment

that we have not yet identified is favorably affecting the final placement results.

Even though both algorithms have been empirically shown to converge to a near-optimal final
placement, further research is needed to determine if the annealing properties are still preserved
when the cost calculations are based on slightly outdated information, and nonuniform distribution
of moves is incorporated. More importantly, the increase in performance of our algorithms may
only be due to conventional simulated annealing algorithms, such as TimberWolf, which our pro-

grams are largely based on, not using the most optimum cooling schedule or acceptance function.
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APPENDIX A

PROCEDURAL DESCRIPTION OF PARALLEL ALGORITHM

The parallel simulated annealing algorithm has been implemented in the C programming
language. The software package has been divided into several modules, each of which controls a
different aspect of program control. Each of the modules is contained in a separate file. The fol-

lowing sections give details and purpose of the procedures and functions contained in each module.

annealh

Header file containing all global structure and constant definitions along with external

declarations of global variables. This file is used by all other modules through inclusion in

the compilation process.

This file contains all source code which is loaded into and run by the host-processing node
to initialize the system, distribute the work load to the hypercube processing nodes, and

gather the final optimized cell placement. This file contains the following procedures and

functions:

main - Main functional level procedure of host node which calls all required procedures
and loads the processing nodes with executable code.

input__params - Reads from user file the initial setting of various system wide-parameters
and allocates buffer space for holding the cell specification structures.

input__mods - Reads from user file the size and interconnectivity of the standard logic cells
whose placement is to be optimized.

distribute_mods - Randomly performs the initial placement of cells and distributes the
physical chip area among the node processors.

init_mod - Initializes the cell-specification structures at both the cell and net level as
determined by the initial random placement.
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send__mods - Transfers the cell-specification structure over the hypercube links to each
processing node as determined by the distribute__mods procedure.

gather__mods - Retrieves the optimal placement of cells from the processing nodes of the
hypercube.

This file contains the procedures run at the host node, which performs terminal and file
output of circuit statistics. These procedures include:

network__cost - Calculates and outputs to the terminal the cost of a given cell placement
in terms of edge overlap, cell overlap, and required wire routing.

print_mod__pos - Outputs the position of each of the standard logic cells and the total
area required for the given placement of cells.

print__circuit - Graphically shows the relative position of each of the cells in a given

placement. A file capable of being run using pic | roff -me to create an exact picture of the
given placement is also created.

This file contains the main functional level procedure which is duplicated and run at each

of the node processors of the hypercube to perform the parallel simulated annealing algo-
rithm,

This file contains the node procedures and functions which initialize a hypercube node using
system parameters and cell specification structures received from the host node. This file

contains the following procedures and functions:

init__params - Initializes the system wide parameters received from the host node.

init_mod - Initializes the locally allocated cell specification structures received from the
host node.

neighbors - Determines the identity of the node processors which correspond to the east
and west logical neighbors of the physically mapped circuit.
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init_ borders - Interacts with logical east and west node processors to create a list of cells
to be used in determining cell overlap attributed to cells in neighboring processors.

File containing communications-oriented procedures and functions used to transmit and
receive information over the links of the hypercube using logical channels. This file con-

tains the following procedures and functions:

send__mod - Transmits the cell-specification structure of a given cell to a neighboring node
processor.

rec__mod - Receives a cell-specification structure transmitted using send__mod.
broadcast_cost - This function transmits the partial global cost associated with a node’s
locally allocated cells to all other nodes in the hypercube. It then receives and adds partial
costs from all other nodes in order to determine the global cost of the present placement.

broadcast__update - Informs and receives from all other node processors information
regarding changes in cell placement during the last iteration of the algorithm.

send__host - Transmits the final placement of all locally allocated cells to the host node.

utility.c

This file contains various computationally intensive procedures and functions used during

the iterative phases of the algorithm. This file contains the following procedures and func-

tions:

irandom - Produces a pseudorandom integer between given limits

drandom - Produces a pseudorandom real valued number between given limits.
param__update - Updates temperature parameter and range limiter.

mod_sel - Randomly selects a cell from a list of locally allocated cells.

dist__ok - Determines if the distance of the movement of a cell is within the bounds set by
the range limiter.

accept__change - Determines if a proposed moved should be accepted based on the change
in cost and an exponential function of temperature.

switch__list - Switches the row a cell is associated with.
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insert__mod - Adds a cell to the present set of locally allocated cells.
remove__mod - Removes a cell from the present set of locally allocated cells.

find__cost - Determines the partial global cost associated with the present set of locally
allocated cells.

find__my_ex_ cost - Determines the change in cost for a proposed intraprocessor exchange
of cells.

find_ex_cost - Determines the partial change in cost for 'a proposed interprocessor
exchange of cells

find__disp__cost - Determines the change in cost for a proposed intraprocessor displacement
or the slave processor’s partial cost for a proposed interprocessor displacement.

disp__loss_cost - Determines the master’s change in cost for an interprocessor displace-
ment.

wire__cost - Determines the change in wiring cost for a proposed move.

overlap_ cost - Determines the change in cell overlap with cells within the same processor
for a proposed move.

border__cost - Determines the change in cell overlap with cells in logical east and west
neighboring processors for a proposed move. ’

update - Updates all locally allocated cell-specification structures for a change in a given
cell’s location.
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APPENNDIX B

PROGRAM USERS GUIDE

The parallel simulated annealing algorithm has been implemented in the C programming
language and divided into seven separate files. A UNIX shell script file named Makefile has been
incorporated to aid in compilation of these files into an executable file that can be used on the Intel
iPSC hypercube. This shell script can be invoked by typing the command : make n. The invoca-
tion of this command will result in the compilation and linking of the source code into two
separate executable modules. These files will be named HOSTn and NODEn and are the executable
code run at the host and node processors, respectively. The parameter n used in the makefile invo-
cation specifies the size of the hypercube one wants the final object code to execute on. At present

only hypercubes of 4, 16, and 64 nodes have been implemented.

Compilation Parameters

Several options have been incorporated into the source code which are activated via the
preprocessor #ifdef commands. The following options can be activated by enabling the definition
parameter using -Doption in the Makefile and recompiling the source code:

DEBUG: Allows additional information at each iteration regarding selection,
cost, and acceptance of moves to be printed. (Simulator Only)

PRINT: Enables printing of additional placement and iteration statistics.

COST: After each temperature change the global cost of the present cell
placement is determined and output.
WEIGHTED: Causes cost calculations regarding wiring to be based on formula

1/2 perimeter bounding box X MIN/[ 1, sqrt(number pins in net - 2)]
instead of just 1/2 the bounding box.




71

CENTER: Specifies that the input file will have cells with only a single pin
in each cell centered in the middle of the cell.

AUTOTEMP: Inclusion of this definition causes the algorithm to complete an initial step during
which a few representative cell movements are attempted in order to find an optimal
initial temperature that causes 95% of moves with increased cost to be accepted in the

initial algorithm iteration. Normally, the initial temperature will be set to
4,000,000.

Input File

Input of system parameters and logic-cell-specifications is via a file named "data.” The first
six integer values in this file have the following meanings to the program:
1. Number of attempted moves per cell at each iteration/temperature of system.
2. Standard height of each logic cell.
3. Bytes of memory required to hold all cell-specification structures.
4. Desired length of every row of cells in circuit.
5. Number of rows of cells in circuit.

6. Desired character prefix for output file.

Following these parameters a variable number of cell-specification structures should follow.

For each standard logic cell in the circuit the following format is required:

1. Unique global cell identification number (consecutively numbered from 0)
2. Cell width

3. Total number of nets cell is a member of
4. For each net specified in 3.
a) Unique global net identification number
b) Total number of pins in net specified in a.
¢) For each of the pins specified in b.
i) Identification number of cell in which pin is located
IF ( preprocessof definition CENTER not defined )

ii) X and Y location of pin relative to center of cell
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Algorithm Qutput

The majority of the initial and final placement statistics will appear on screen or may be
routed to a user-specified file via the UNIX routing commands. At the start of program execution,
the cost of the initial random placement of cells will be given along with a graphical representation
of the relative positions of the cells within each row. At each iteration of the algorithm, various
system parameters will be outputted to inform the user of the algorithm;s i)rogrws. At completion

of the algorithm, the final placement cost and another graphical circuit representation will be given.

An output file named n place will also be created in addition to the on screen output. The
prefix n in this file name is the character specified by the user in the input file. This results file will
be used to display the status of the algorithm at each iteration. At the completion of the algo-
rithm, this file will contain a series of records which can be used via the UNIX command

pic lroff —me to create an exact representation of the final placement.
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